Robust Software in a Failing World
The Netflix solution

Kjell Jargen Hole
Simula@UiB

HID, Bergen, Norway 11 Feb. 2014



Overview

 Why welb-scale solutions should be cloud based

 How to avoid catastrophic cascading tailures



Why cloud?



Everything Is broken
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Monolithic solutions

* Insufficient availability due to
cascading failures

* Many dependencies make it
hard to upgrade software

Monolithic
solution




Availability
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Availability

Challenge: shift the cure
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Problem: supbsystem
dependencies
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Break dependencies

Isolation—tailure in one subsystem should
never result in cascading system failure



Why cloud?

* Availability: The cloud provides a cost-effective
way to leverage the redundancy and diversity
needed to break dependencies

V2
e

e Scalability: Server virtualization supports the

needed scalability ; |

 Performance: The use of multiple cloud regions -

facilitate low-latency service all over the world Monolithic

solution




How to 1solate fallures

(according to Nettlix)

1. Introduce redundancy and diversity to isolate
impact of local tfailures, and

2. Induce failures to learn how to make a system
increasingly robust to cascading failures
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Replacement

Redundant services with
timeout and failover
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Chaos Monkey

The tool Chaos Monkey disables random production
instances to make sure the Netflix solution survives this
common type of failure without any customer impact
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Default fallback response

Timeout with fallback default )

response used when all
instances are affected

dependent

Timeout &
default
response
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Canary push

e Since a web-scale solution supports users all over
the world, there iIs no good time to take down the
system and upgrade its software

* An alternative Is to introduce new code by keeping

both old and new code running and switch user
requests to new code
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Simple canary push
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Red/black deployment
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Standby blue system

e Software error in both red and black deployment

* Blue system is an indeogntly p N e
authored system delivering dependent e

a minimal solution .
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Zone 1solation
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Region isolation

DNS

. ocal
balancer

Chaos Kong is used to test region tailures
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INnformation from

techblog.netflix.com



http://techblog.netflix.com

