Robust Software in a Failing World
The Netflix solution

Kjell Jargen Hole
Simula@UiB

HID, Bergen, Norway 11 Feb. 2014



Overview

 Why welb-scale solutions should be cloud based

 How to avoid catastrophic cascading tailures



Why cloud?



Everything Is broken

ks |

Rate of change

Figs from Netflix blog



Monolithic solutions

* Insufficient availability due to
cascading failures

* Many dependencies make it
hard to upgrade software

Monolithic
solution




Availability

Avallability tradeoft

99.999%

99.99%

99.9%

99%

\

Frontier of
availability/change

4
24
4

Rate of change

6



Availability

Challenge: shift the cure

99.999%

99.99%

99.9%

99%

\

\

\

\
\
N\
N
N
E 3
~

~

Rate of change

v




Problem: supbsystem
dependencies

Direction of
dependency
Local

uptime

Sub-

system
99.99%

Sub-

system
99.99%

Sub- .
system .- '
99.99%



Break dependencies

Isolation—tailure in one subsystem should
never result in cascading system failure



Why cloud?

* Availability: The cloud provides a cost-effective
way to leverage the redundancy and diversity
needed to break dependencies

V2
e

e Scalability: Server virtualization supports the

needed scalability ; |

 Performance: The use of multiple cloud regions -

facilitate low-latency service all over the world Monolithic

solution




How to 1solate fallures

(according to Nettlix)

1. Introduce redundancy and diversity to isolate
impact of local tfailures, and

2. Induce failures to learn how to make a system
increasingly robust to cascading failures

11



Replacement

Redundant services with
timeout and failover

dependent
service

]

- . J
'
.
'
.
/
4 .
r

]

12




Chaos Monkey

The tool Chaos Monkey disables random production
instances to make sure the Netflix solution survives this
common type of failure without any customer impact

13



| atency monkey

e N\
dependent
service

Latency Monkey tests ) l -

what happens when the \ e
dependent

delay becomes too long o

= y
/ \ p short timeout
e N
‘ -
‘ -

]

.

]

14



Default fallback response

Timeout with fallback default )

response used when all
instances are affected

dependent

Timeout &
default
response

15



Canary push

e Since a web-scale solution supports users all over
the world, there iIs no good time to take down the
system and upgrade its software

* An alternative Is to introduce new code by keeping

both old and new code running and switch user
requests to new code

16



Simple canary push

4 )
dependent

Instance
new code

dependence

17



Red/black deployment

e I
dependent
system Fallback
\ g
.’ \\\\\\‘ code

dependence dependence
v2.3 V2.2

18



Standby blue system

e Software error in both red and black deployment

* Blue system is an indeogntly p N e
authored system delivering dependent e

a minimal solution .
. SRS ) version

X 4
e Used when all resent versions /" \
of the code fail =

Static
reference
sysiem

dependence
V2.

19



Zone 1solation

4 )
Local
balancer
vae Vi dependent
i system
Chaos Gorilla . /
generates zone J / Zone B

fallures

dependehﬁjk dependence
% N y,




Region isolation

DNS

. ocal
balancer

Chaos Kong is used to test region tailures

21




INnformation from

techblog.netflix.com



http://techblog.netflix.com

