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Overview

• Why web-scale solutions should be cloud based 

• How to avoid catastrophic cascading failures
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Why cloud?
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Everything is broken
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Monolithic solutions

• Insufficient availability due to 
cascading failures 

• Many dependencies make it 
hard to upgrade software
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Availability tradeoff
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Challenge: shift the cure
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Problem: subsystem 
dependencies
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Break dependencies

Isolation—failure in one subsystem should 
never result in cascading system failure
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Why cloud?

• Availability: The cloud provides a cost-effective 
way to leverage the redundancy and diversity 
needed to break dependencies  

• Scalability: Server virtualization supports the 
needed scalability 

• Performance: The use of multiple cloud regions 
facilitate low-latency service all over the world Monolithic"

solution



How to isolate failures 
(according to Netflix)

1. Introduce redundancy and diversity to isolate 
impact of local failures, and  

2. Induce failures to learn how to make a system 
increasingly robust to cascading failures
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Replacement

Redundant services with 
timeout and failover
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Chaos Monkey

The tool Chaos Monkey disables random production 
instances to make sure the Netflix solution survives this 
common type of failure without any customer impact
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Latency monkey

Latency Monkey tests 
what happens when the 
delay becomes too long
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Default fallback response

Timeout with fallback default 
response used when all 
instances are affected
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Canary push

• Since a web-scale solution supports users all over 
the world, there is no good time to take down the 
system and upgrade its software 

• An alternative is to introduce new code by keeping 
both old and new code running and switch user 
requests to new code
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Simple canary push
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Red/black deployment

!18

dependence 
v2.2

dependent 
system

dependence 
v2.3

Fallback 
to old 
code



Standby blue system
• Software error in both red and black deployment 

• Blue system is an indecently  
authored system delivering 
a minimal solution 

• Used when all resent versions  
of the code fail

dependent 
system
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Zone isolation

Chaos Gorilla 
generates zone 
failures
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Region isolation
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Information from

techblog.netflix.com
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