
Robust Software in a Failing World  
The Netflix solution

Kjell Jørgen Hole
Simula@UiB

!
HID, Bergen, Norway 11 Feb. 2014

Overview

• Why web-scale solutions should be cloud based

• How to avoid catastrophic cascading failures

!2

Why cloud?

!3

Everything is broken

Hardware will fail"
slow change
large scale

!
Telcos

Everything is broken"
rapid change
large scale

!
Web-scale

Everything works"
slow change
small scale

!
Enterprise IT

Software will fail"
rapid change
small scale

!
Startups

Rate of change

Sc
al

e

!4
Figs from Netflix blog

Monolithic solutions

• Insufficient availability due to
cascading failures

• Many dependencies make it
hard to upgrade software

!5

Monolithic"
solution

Availability tradeoff

Rate of change

Av
ai

la
bi

lit
y

99.999%

99.99%

99.9%

99%

!6

Frontier of 
availability/change

Challenge: shift the cure

Rate of change

Av
ai

la
bi

lit
y

99.999%

99.99%

99.9%

99%

!7

Problem: subsystem
dependencies

!8

. . .sub-
system
99.99%

sub-
system
99.99%

sub-
system
99.99%

Direction of
dependency

Local
uptime

sub-system

Break dependencies

Isolation—failure in one subsystem should
never result in cascading system failure

!9

Why cloud?

• Availability: The cloud provides a cost-effective
way to leverage the redundancy and diversity
needed to break dependencies

• Scalability: Server virtualization supports the
needed scalability

• Performance: The use of multiple cloud regions
facilitate low-latency service all over the world Monolithic"

solution

How to isolate failures 
(according to Netflix)

1. Introduce redundancy and diversity to isolate
impact of local failures, and

2. Induce failures to learn how to make a system
increasingly robust to cascading failures

!11

Replacement

Redundant services with
timeout and failover

!12

Timeout

dependence

dependent
service

Chaos Monkey

The tool Chaos Monkey disables random production
instances to make sure the Netflix solution survives this
common type of failure without any customer impact

!13

Latency monkey

Latency Monkey tests
what happens when the
delay becomes too long

short timeout

dependent
service

longer
timeout

dependence

!14

dependent
service

Default fallback response

Timeout with fallback default
response used when all
instances are affected

!15

Timeout &
default

response

dependent
system

dependence

Canary push

• Since a web-scale solution supports users all over
the world, there is no good time to take down the
system and upgrade its software

• An alternative is to introduce new code by keeping
both old and new code running and switch user
requests to new code

!16

Simple canary push

!17

Timeout

Canary
instance

new codedependence

dependent
system

Red/black deployment

!18

dependence
v2.2

dependent
system

dependence
v2.3

Fallback
to old
code

Standby blue system
• Software error in both red and black deployment

• Blue system is an indecently  
authored system delivering 
a minimal solution

• Used when all resent versions  
of the code fail

dependent
system

!19

dependence
v2.3

Fallback
to static
version

Static
reference
system

Zone isolation

Chaos Gorilla 
generates zone
failures

!20

Local
balancer

Zone A Zone B

dependent
system

dependencedependence

dependent
system

Region isolation

!21

Local
balancer

Local
balancer

DNS
Region W Region E

Chaos Kong is used to test region failures

Information from

techblog.netflix.com

!22

http://techblog.netflix.com

