
Concepts
Requirements

Bjarne Stroustrup
Texas A&M University
http://www.research.att.com/~bs



2009 Reflections

• Concepts for C++0x: We were so close
– We had/have

• Design
• Experimental (only) implementation (ConceptGCC)
• Text voted into C++0x WP
• Standard library “conceptualized”

• What went wrong?
• What must we consider to avoid a 2nd failure

2Stroustrup - concepts - Bergen



2009 Reflections
• Concepts for C++0x were defeated by

– Fear of the new, fear of the unknown and unknowable
– Fear of compilation overheads
– Inflexibility relative to “status quo” definition/implementation of concepts
– Fear that the specification was unstable
– Fear of complexity (specifications and use)
– Fear that the “status quo” design would not scale (program size and usability)

• “Schedule” was IMO only a small part of the problem
• We have to reevaluate and redesign from scratch

– Of course we now have much more experience
– We must work harder on simplicity (teachability and scalability)
– We must work harder on validation
– Implementation is no substitute for design (and vise versa) 

3Stroustrup - concepts - Bergen



Template argument checking
• Problem recognized early

– Three pages of D&E

• Lobbying by Alex Stepanov
• Experiments with and use of constraints checking in C++98

– E.g., Stroustrup, Siek, Boost

• Languages analysis: Garcia, et.al (several papers over the years)
• Bjarne Stroustrup and Gabriel Dos Reis: Concepts – Design 

choices for template argument checking
• Bjarne Stroustrup: Concept checking – A more abstract 

complement to type checking 
– October 22, 2003 
– Not a design – instead: a set of requirements

4Stroustrup - concepts - Bergen



2003 Design aims
1. A system as flexible as current templates
2. Enable better checking of template definitions 
3. Enable better checking of template uses
4. Better error messages 
5. Selection of template specialization based on attributes of template arguments 
6. Typical code performs equivalent to existing template code 
7. Simple to implement in current compilers
8. Compatibility with current syntax and semantics
9. Separate compilation of template and template use 
10.Simple/terse expression of constrains
11.Express constraints in terms of other constraints 
12.Constraints of combinations of template arguments
13.Express semantics/invariants of concept models 
14.The extensions shouldn’t hinder other language improvements 

5Stroustrup - concepts - Bergen



1. A system as flexible as current templates

• Templates and dynamically typed languages have 
demonstrated far greater flexibility and ability to 
sustain reuse than systems based on types and 
interfaces. 
– specifying the type of arguments for operations requires exact 

agreement between template writer and template user – that's more 
foresight that we can realistically expect.

• Constraints should not require explicit declaration of 
argument types and be non-hierarchical.
– built-in types, such as int and Shape* should remain first-class template 

arguments, requiring no workarounds. 

6Stroustrup - concepts - Bergen



“Overloading”

• 5. Selection of template specialization based on attributes of 
template arguments. It must be possible to define several 
templates (e.g. template functions or template classes) and to 
select the one to be used based on the actual template 
arguments. Furthermore, we must be able to specify 
preferences among related types and among separately 
developed types (class is the minimally constraining concept). 

7Stroustrup - concepts - Bergen



“Axioms”

• 13. Express semantics/invariants of concept models. For 
example, a user should be able to state that his/her array class 
has the property that its elements occupy contiguous storage, 
or that an increment followed by a decrement of his/her 
bidirectional iterator is a no-op. 

• suggested in Dos Reis: Generic Programming in C++: The 
next level. ACCU2002 ]: 
– { Op(x, x) } == { true } 
– { Op(x, y) == true } -> { Op(y, x) == true } 
– { Op(x, y) == true && Op(y, z) == true } -> { Op(x, z) == true } 

8Stroustrup - concepts - Bergen



“Concepts are not types”
• Conventional static (compile-time) type checking performs 

two roles: 
– it controls the way a programmer can invoke and combine operations 

(e.g., it verifies that you can add two integers and you can add two 
complex numbers) 

– it provides sufficient information for code to be generated (e.g., it 
ensures that a compiler has the information it needs to generate the 
exact code sequences to add two integers and to add two complex 
numbers) 

The need to provide the information required for code 
generation when writing code overconstrains the 
programmer’s expression of solutions. 

• Implication: concept checking needs to check that code can be 
generated, not how 9Stroustrup - concepts - Bergen



Simplify through generalization
• Consider: 

X operator+(X,X); 
X operator+(const X&, const X&); 
X& operator+(X&,X&); 
const X X::operator+(const X); 
X X::operator+(const X&); 
X X::operator+(X) const; 

• Basically, there are 3*4*4*4==192 ways of expressing a 
function taking two arguments and returning a value, 

10Stroustrup - concepts - Bergen



The key issues are not syntactic
• “Basically, such “pseudo signatures” can express what usage-

pattern can (and vise versa). Thus, the two approaches can be 
seen as different syntactic representations of the same idea”

• Though syntax matters immensely for the usability of concepts

11Stroustrup - concepts - Bergen



Missing in 2003
• Concept_maps

– Instead a more limited mechanism for adding attributes was envisioned: 
• int* has_member typedef int value_type; 

– or 
• template<class T> operator:: (T*, value_type) = T; // “::” as binary op. on names. 

– Alternatively, one might consider a general “rewriting system” 
whereby some patterns may be rewritten based on constraints/concepts. 

– Must deal with
• x.f(1); // ok 
• f(x,1); // ok 

12Stroustrup - concepts - Bergen



2009 Reflections

• No major increase in compilation speed
– Implied in 2003 “simple to implement” (but underestimated)
– Implies that concept programs cannot be dramatically longer 

than non-concept template programs
• Probably implies built-in concepts

– Major vendors will insist
• Yes, really

– Conjecture: “major” means “<10%”

13Stroustrup - concepts - Bergen



2009 Reflections
• Simple to use

– Most C++ programmers don’t know type theory
• For “type theory” think ‘anything written with Greek letters”
• And will not learn it

– Many C++ programmers dislike type theory
• Even if they don’t know it

– What the end user have to write must not increase significantly
• Real Programmers™ hate writing what they consider redundant
• It must be easy to give a reason for anything a user must write

– Beware of the cleverness and novelty needed to publish 
academic papers

• I suspect we need a lot of refinement of ideas (engineering)
14Stroustrup - concepts - Bergen



2009 Reflections

• Scale
– Composition must be easy

• How modular?
• Don’t damage run-time performance

– Think in terms of million-line programs
– Compilation, linking, and run-time speed

15Stroustrup - concepts - Bergen



2009 Reflections

• We were obsessed with the STL and monoids
– Fundamental programming ideas must be validated in 

several application domains
– Grad students are not a good substitute for “Real 

programmers” 

16Stroustrup - concepts - Bergen



Heard in Bergen
• Mix concepts code and “old template” code
• Tool support is essential

– Debugging
– Intellisence

• Concepts as predicates?
– Predicates on function arguments in requires specification?
– How about exception is concept predicates?
– How to define equivalence for concept predicates?

• Interface to theorem prover?
• The compiler know a lot about types that we can’t get to
• We need to reduce the amount of template hacking

Stroustrup - concepts - Bergen 17



Heard in Bergen 
• The main purpose of “concepts” is not to get academic 

publications!
• C++’s image is a huge problem

– Financial, high-performance, mobile

• Incremental adoption is essential
– Concept and old-template libraries working together
– Must be able to start small, e.g. individual class or algorithm

Stroustrup - concepts - Bergen 18



2009 Reflections
• Concepts for C++0x were defeated by

– Fear of the new, fear of the unknown and unknowable
– Fear of compilation overheads
– Inflexibility relative to “status quo” definition/implementation of concepts
– Fear that the specification was unstable
– Fear of complexity (specifications and use)
– Fear that the “status quo” design would not scale (program size and usability)

• “Schedule” was IMO only a small part of the problem
• We have to reevaluate and redesign from scratch

– Of course we now have much more experience
– We must work harder on simplicity (teachability and scalability)
– We must work harder on validation
– Implementation is no substitute for design (and vise versa) 

19Stroustrup - concepts - Bergen


	Concepts�Requirements
	2009 Reflections
	2009 Reflections
	Template argument checking
	2003 Design aims
	1. A system as flexible as current templates
	“Overloading”
	“Axioms”
	“Concepts are not types”
	Simplify through generalization
	The key issues are not syntactic
	Missing in 2003
	2009 Reflections
	2009 Reflections
	2009 Reflections
	2009 Reflections
	Heard in Bergen
	Heard in Bergen 
	2009 Reflections

