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Motivation and overview 
  Compiler optimizations are limited to the 

optimizations and types built in by the compiler writer 
  Cannot be extended to user-defined types 
  Cannot be extended with user-defined (high-level) 

optimizations 
  Leverage ideas from generic programming to enable 

  Applying optimizations to classes of types 
  Extending compiler with new optimizations 



Optimizations are like pharmaceuticals 
  Vendors work on “blockbusters” 

  Optimizations that apply to many programs 
  Tend to be low-level 

  Many other optimizations are left out 
  Not enough impact to justify implementing 

  See Robison, “Impact of Economics on Compiler 
Optimization” (Java Grande/ISCOPE 2001) 



“Orphan” optimizations 
  We all have application-specific optimizations that we 

want 
  None of them by itself is worthwhile to put into a 

production-grade compiler 
  Therefore, vendors will not add them 

  And users cannot add the optimizations themselves 
  But users would still benefit from them 

  Both for performance and readability 



Compilers lack high-level optimizations 
  Consider ATLAS (auto tuning) 

  Well-studied problem (matrix-matrix multiplication)  
  Needs hand-applied, library-specific optimizations 

  User-defined data types have no custom 
optimization support at all 
  But would benefit from having such support 
  Example:              (can cancel iterator         and       , etc.) 

  Functional language compilers do some because of 
guarantees on the algebraic structure of data types 
  But there is more that cannot be done that way 

−−++std::list



Optimization reuse 
  Good optimizations are hard to write 

  Many corner cases (pointers, casts, exceptions, etc.) 
  Use results of pointer analysis, path-sensitivity, etc. 

  Users are not able to write them 
  Compiler writers do not want to write too many 
  Reuse of a few optimizations for different tasks 

would mitigate these problems 



Benefits of optimization reuse 
  Better performance of user code 
  Compilers more effective and easier to write 
  Allows user-written, sophisticated optimizations by 

even unsophisticated users by building from expert-
written generic optimizations 

  Increased adoption of abstract data types due to 
simpler interfaces 
  cf. Mateev et al’s matrix library 



Identities 
  Many types and operations have similar identities: 

int x;
int y = x + 0;

→ y = x

double w;
double v = w ∗ 1.;

→ v = w

matrix m;
matrix m2 = mul(m, identity(nrows(m)));

→ m2 = m



Monoids 
  In all of these cases, operation with an identity is a 

null operation (and can be removed) 
  Mathematicians have a name for all operations with 

the identities                  and                  : a monoid 
  Binary associative operator with identity 

  Write the optimization in terms of monoid 
  One optimization can optimize all monoids 

  Including all previous cases 
  Even though they seem very different 

0 + x→ x x + 0→ x



Generic programming 
  An organizational principle for software libraries 

  Based on properties of types 
  Three major components: 

  Concepts: constraints on types 
  Models: satisfaction of those constraints 
  Generic algorithms/data structures: apply to all types that 

model certain concepts 
  Similar constructs are in several languages 



Concept-based optimization 
  Implementing compiler optimizations using the 

generic programming approach allows reuse 
  Optimizations either in compiler, library, or individual 

program 
  Reuse allows: 

  Higher-quality optimizations  
  Reduced effort 
  Optimizations by users 



Concept-based optimization 
Meta-level concepts 

Meta-level models 

Generic optimizations 

User types 

User program 

Conform to 

Passed to 

Are applied to 

Correspond to 

Come from 
Optimization 
fragments 



Meta-level concepts and models 
  Meta-level concepts are requirements for fragments 
  Meta-level models provide the fragments 

  Code run within a larger optimization 
  Optimizations are generic programs at the meta-level 
  Can be implemented via Haskell-style dictionaries 

Monoid meta-level concept 

•  Find identity elements      
  Set of program expressions 

•  Find binary operation      
  Set of program expressions and pairs of arguments 



  Analysis and transformation fragments contain parts 
of a full optimization 

  Fragments are customized for each type in program 
  Analysis fragments locate program points 

  That do a particular operation, modify a variable, etc. 
  Transformation fragments modify the program 

  Change an operation found by an analysis fragment, etc. 

Optimization fragments 

x = y;
z = w;

〈s1, x, y〉
〈s2, z, w〉



Optimizing a program 
  Optimizations applied for each combination of input 

types and operations in the program 
  Changes are applied after all optimizations 

  To avoid invalidating analysis results 

Identity removal 

Copy propagation 

int x, y;
double z;
matrix m;
x = nrows(m + matrix(0));
y = x;
z = (double)y ∗ 1.;

// ...
x = nrows(m);
y = x;
z = (double)x;

int, +
double, ∗
matrix, +

int



Proofs of concept 
  Feasibility demonstrated with prototypes 

  Regular-expression-based optimization specification 
language 

  Traditional flow equations 
  Both are embedded into Scheme and apply to simple 

C++ programs (using the ROSE framework) 



Identity operation removal 
                   and                 (for generalizations of    

and   ) 
  Applies to any monoid 
  Two meta-level concepts required: Monoid and 

Assignable 

  Transforms                                   to 

0 x 

+ 

x 

From Monoid 

From Monoid From Assignable 

int w = x + 3 ∗ y;int w = 0 + (x + 3 ∗ y);

0
+

0 + x→ x x + 0→ x



  Only Assignable is required  

Generic copy propagation 

x y 

= 

x or y 

= 

… ×
… x … 

x y 

= 

x or y 

= 

… ×
… y … 

int x, y, z;
x = y;
z = x;
x = 3;
f(z);

f(y);



Conclusions 
  Generic optimizations allow optimizations to be 

applied to entire classes of types 
  Optimizations can be encoded in library to extend 

compiler 
  Optimizations can be reused 
  Feasibility demonstrated with implementation 



Future work 
  Analysis and transformation fragments that work on 

many types at once 
  Ordering and profitability of generic optimizations 
  Using axioms or a different high-level specification 

language 
  Generic transformations in MetaOCaml 
  User-defined type optimization in Haskell or other 

languages 


